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The lattice gas model is extended to include a temperature variable in order 
to study thermohydrodynamics, the combination of fluid dynamics and heat 
transfer. The compressible Navier-Stokes equations are derived using a 
Chapman-Enskog expansion. Heat conduction and convection problems are 
investigated, including B~nard convection. It is shown that the usual rescaling 
procedure can be avoided by controlling the temperature. 

KEY WORDS: Lattice gas; thermohydrodynamics; B6nard convection; 
Galilean invariance. 

1. I N T R O D U C T I O N  

Lattice gas au tomata  were first proposed by Frisch, Hasslachcr, and 
Pomeau  ( F H P )  tl~ to simulate incompressible Navier Stokes equations. As 
a parallel and powerful computa t ional  method, the lattice gas scheme has 
been extended to describe additional fluid problems, including flow 
through porous  media, chemical reactions, 13'41 phase transitions, ~s~'~ and 
surface tension/7J Lattice gas au tomata  are classical many-body  dynamical  
systems which provide several simple solvable models to study classical 
statistical problems. Recent achievements in this area include the derivation 
of  wavelength dependence and frequency dependence of  the t ransport  
coefficients ~8~ and long-time behavior of  the velocity autocorrela t ion 
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functions. ~'~ Most research using lattice gas methods has focused on flow 
problems, particularly on isothermal flows. 

In this paper, we propose a lattice gas model incorporating 13 lattice 
gas velocities to simulate a more realistic thermohydrodynamic system. The 
model has a definition of temperature which is related to the microscopic 
kinetic energy. A Chapman Enskog expansion is used to derive the 
thermohydrodynamic equations, Eq. (45), and the transport coefficients, 
Eqs. (43) and (44). The FHP 1~'21 lattice gas requires a scaling of time, 
pressure, and viscosity because of the non-Galilean invariance. Our model 
can avoid this scaling for isothermal systems. 

In Section 2, we describe the model, discuss its thermodynamic 
properties, and derive the thermohydrodynamic equations for local equi- 
librium. The derivation of transport coefficients is given in Section 3. 
Applications of this model to heat conduction in channel flows are studied 
in Section4. Section 5 presents computer simulation results for Benard 
convection. In Section 6, we discuss the isothermal limit and the partial 
recovery of the Galilean invariance. The last section discusses future 
applications. 

An earlier model including temperature was proposed by Burgess and 
Zaleski, Imj in which "colors" are used to represent an energy variable. Even 
though simulations of this model exhibit interesting phenomena, the model 
is unrealistic. The colors are particle labels which have no intrinsic relation 
to the dynamical properties. The propagation of thermal energy is 
represented by the color field. The model does not possess a well-defined 
thermodynamic energy nor temperature transfer. The transport coefficients 
can only depend on density. In physical systems, the transport coefficients 
depend on both density and temperature. 

2. A LATTICE GAS MODEL FOR THERMOHYDRODYNAMICS 

For single-speed lattice gas models, such as six-bit lattice gas 
models, ~1'2"~1~ the energy equation is equivalent to the continuity equation. 
For seven-bit lattice gas models with rest particles, ~j:) local kinetic energy 
is not conserved during some collision processes. Therefore, it is necessary 
to include at least two different nonzero particle speeds in the model to 
study temperature-dependent effects. In this paper, we construct a lattice 
gas model with three types of particles, distinguished by their speeds and 
masses. We assume these particles have the speed zero, one, and two, with 
masses m~ = 2/3, 1, and 1/2, respectively, where a (=0,  l, or 2) denotes the 
type of particle. 

The reason for using different masses is to maximize the number of 
allowed collisions while conserving mass, momentum, and energy exactly. 
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Having both moving masses have the same momentum greatly increases 
the number of allowed collisions. Maximizing the number of collisions 
increases the allowed range of Reynolds numbers. Having a mass of 2/3 for 
the stopped particle maximizes the number of particle-changing collisions. 

The spatial lattice is triangular. At each lattice site, there are 12 dif- 
ferent nonzero velocity states and one zero-speed state allowed. Each 
velocity is designated by e,~ = c~[cos(2na/6), sin(2na/6)] (a = 1 ..... 6; c~ = 0, 
I, and 2). As mentioned above, both speed-one and speed-two particles are 
chosen to have unit momentum in order to maximize the number of 
momentum-conserving collisions. We define e,~ as the kinetic energy for a 
type a particle divided by its mass. Then ~ = �89 leVI 2 and the corresponding 
values associated with the particles are zero, one-half, and one, respectively. 
In order to minimize computer memory requirements, an exclusion rule is 
imposed which forbids two particles of the same type to occupy a given 
velocity direction at a site. Unlike the passive scalar model, ~3~ we allow 
two particles with different speeds to occupy a given velocity direction at 
a sitc. 

We use N,~(x, t) (a = 0, l, 2; a = 1 ..... 6) to denote the particle occupa- 
tion at site x and time t. We have N ~ = 0  or 1. 

There are two microscopic processes: streaming and collision. In the 
streaming process, a particle in state e,~ either stays at its original site or 
moves from its present site to the nearest or next nearest neighbor site in 
the direction e,", depending on its speed (zero, one, or two lattice units per 
unit time). There are no particle interactions during streaming processes. 
When particles occupy the same site, a collision can occur, changing par- 
ticle directions and speeds. Examples of allowed collisions are shown in 
Fig. 1. 

in general, three kinds of collisions are allowed. The first kind of colli- 
sion includes collisions between the same type of particles. Collision rules 
for speed-one particles I~ are the same as the rules for speed-two particles. 
The second kind of collision involves both speed-one and speed-two par- 
ticles and conserves the number of particles of each type. The third kind of 
collision involves both speed-one and speed-two particles and allows a 
change in the number of each type of particle. An example is shown in 
Fig. lc: a speed-two particle collides with a rest particle and two speed-one 
particles emerge. Only this type of collision can change the number of zero- 
speed particles. To increase the number of this type of collision, we allow 
all possible collisions which conserve total mass, momentum, and energy. 

These three kinds of collisions can occur simultaneously or sequen- 
tially (there is no difference for a complete collision table). For 
simultaneous collisions, there is no order of preference for the collisions. 
One simply takes the entry particle configuration and redistributes par- 
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(a} 

Fig. 1. Some collision rules for the 13-bit lattice gas model. The length of the arrt~ws is 
proportional to speed. Speed-one particles have a unit mass. Speed-two particles have 1/2 unit 
mass. The left side refers to the states before a collision. The right side refers to the states after 
the collision. (a) Collisions between the same type of particles; (b) collisions between different 
types; (c) collisions which change the number of each type of particle. 

ticles, following the conservation rules. This usually requires a large colli- 
sion table. For a system with m discrete velocities, a table with 2"' entries 
is required. Sequential collisions, however, can split the collision time into 
an arbitrary number of time steps with one kind of collision occurring 
during each substep. Each collision uses the present particle distributions 
and requires fewer bits to describe collisions. For example, we can have the 
first kind of collision for speed-one and speed-two particles as shown in 
Fig. 1. Then we can use the updated particles as input for the second kind 
of collision. Finally, we can use these updated particles as input for the 
third kind of collision. We will discuss the macroscopic difference between 
simultaneous collisions and sequential collisions later. 

The kinetic equation for the particle occupation N~ due to collision 
and streaming operations can be written 

N~(x + e~, t +  1 ) - N ~ ( x ,  t)=A~ ( t)  
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where A~ is the collision operator for N,",. Let f,~ = (N~)  be the ensemble- 
averaged particle distribution, where ( . )  represents the ensemble average. 
Assume that the collision time scale is much shorter than the characteristic 
time and that the lattice length is much smaller than the characteristic 
spatial scale of the hydrodynamics in which we are interested. Then we can 
rewrite Eq. (1) in the following form: 

OJ"~ + e~. Vf~ = g2~ (2) 
Ot 

where D,~ represents the rate of change o f f ~  due to collisions. To obtain 
Eq. (2), we have used a Boltzmann approximation in which we assume 
there is no correlation between different particle states at the same site and 
the same time, i.e., 

~ x  (N,",(x, t)N/~(x, t ) ) =  (N,,( , t ) ) (N~(x,  t ) )  

We define the macroscopic mass density n, fluid momentum field nu, 
and particle internal energy m by the following equations: 

m,~./,~ = n  (3) 
a .  a 

~ m  "'" j , , e , ,  : n u  (4) 
a ,  rr 

y" m,f~(e~ - u)" (e~ - u) = m; (5) 
t ' l ,  r 

We define the temperature T of the lattice gas using 

i 
~: : ~ k ,  7" (6) 

where i is the number of degrees of freedom and kB is the Boltzmann con- 
stant. This is in analogy to the classical equipartition theorem. ~ is an inten- 
sive quantity, which we use to represent temperature in this paper. This 
definition of temperature is a kinetic definition which differs from a thermo- 
dynamic definition. Because the kinetic energy for lattice gas particles is 
bounded, our temperature range is also bounded. A thermodynamic defini- 
tion of temperature is also possible which has the usual infinite range. The 
choice of definition of temperature affects the pressure definition. Pressures 
obtained using a kinetic definition can differ from pressures obtained using 
a thermodynamic definition. Results of using either choice of definition can 
be related to the results of the other choice. 
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Conservation of mass, momentum, and energy require the following 
constraints on the collision operator: 

E m,~ f2 ,~=O,  E m,~.Q:e,~ = 0 

. . . . . . . .  (7) 

Z ~~ 
a,  r 

Tak ing  moments of (2), we obta in the fo l lowing cont inu i ty ,  momen- 
tum and energy equations: 

~+V.n.=0 (~) 

Onu --+V./?=o (9) 
i~t 

- - + V . I m : u ) + V - q  +2/3  :Vu = 0  If0) 

where /1 is the symmetric tensor of order 2, //~t~ = Y~ .... m~f~Ie~ ' , ) . ,  (e~)/s, q 
m . f ' r  ~ u) 2{e, ~,-u)~, and P i s  the pressure is the heat flux, ( q L = Z  . . . . . . . . .  % -  

tensor. P~;, = E .... m,J',~(e~ - u), (e~ -- u)t,. 
To obtain hydrodynamic equations, wc assume the system approaches 

a local thermodynamic equilibrium. In the Chapman Enskog expansion, 
the equilibrium state corresponds to the zeroth-order collision term in the 
kinetic equation (2), i.e., 12~ "'~ =0. This leads to a Fermi Dirac equilibrium 
distribution 

1 
f~ '~  = ( I  I ) 

I + exp[m~(~ +/3e~- u + ye.7)] 

where ~, /3, and y are Lagrange multipliers determined by the definitions 
(3)-(5). =,/3, and y are functions of n, u, and e. 

To obtain solutions for/1,  q, and P, we expand f~lol to third order in 
u, assuming lul ~ 1 and expand, obtaining ~ = =o + ~J u2, 13 =/30 +/3m u2, and 
? = 2(yo + 7, u2) �9 The velocity expansion off,~ (~ then has the form 

~, ~r ecr f:~o) = d :  - d,(1 - d,)[m,,/3o ~" u + m,,(al + 7, leg] 2) u2] 

d_~ 2 2 a 
+ 2 (1 - d:)(1 - 2d:) m,/3o(%" Ii) 2 

- d:(I - d,~) m . [ ] l ( e , ~ "  u) u 2 

+ d,(1 ~ - d~)(1 - 2d~) mZ, rflo(O~l + ~/1 [ea~] 2)(e  a " 11) U 2 

l d ~ ( l _ d ~ ) ( l _ 6 d ,  3 3 ,~ --~ , m , f l o ( e ,  . u ) S  + . . .  (i2) 
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where d~ is the equilibrium distribution for u = 0, 

1 
d~ - 1 + exp[m~(a o + 27oe~)] (13) 

Because d~ is independent of a, we replace d~ by d~ and e~ by e,. The 
coefficients rio, flJ, ~l, and 71 in Eq. (12) are functions of n and e, deter- 
mined by the definitions (3)-(5). Defining M to be the number of distinct 
velocity directions excluding zero velocity (six for a hexagonal lattice), and 
defining D to be the spatial dimension (two for our model), 

n 
rio = (M/D) ~ d~(1 - do) m,c~2 2 

a~b 2 - a2b~ 
O ~ l - - -  ajb2-a2bl 

albs-atb= 
a~b2-a2bj 

' 1 Y~m~d~(1 -d~)c~ 

In the above equations, 

a, = M Z  mZ~d.(1 -d~) 
r 

O" 

f l~M~m3d~(1 d ~ ) ( l - 2 d ~ c  2) 
a s - 2  D 

o" 

[)1 = t t 2  

b2 MEm2~d,~(l--d~)% 

ha fl~M 
- - 2 D Z m ~ d ~ t ~ - d o ) t ~  -2a~) c]~ -2,, 

o- 

For models in which the rest particle does not have internal energy, 
we obtain 

fl  "~ = ng(n, ~:) u,,u# + p6~,# (14) 
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where 3~p is the Kronecker symbol; g(n, 5) is the coefficient of the convec- 
tive term, 

and 

Here, 

and 

fl2oM 
g(n, ~) = ~ m~3d~(1- do)(l 

D(D + 2)n 7 
(15) 

P = Po + Pl u2 (16) 

2 M 
Po = ~ mod,~c,, - -  = ne 

,, D 
(17) 

n 
p, = ~  [1 - g(n, t:)] {18) 

In Eq. (18), note that pl = 0  when g(n, e,)= 1. This very desirable coin- 
cidence is a direct result of including an additional speed' in the model. 

Equation (17) is the equation of state for an ideal gas. The sound 
speed c,. is ~/~ for the isothermal case. 

To order u 2, the heat flux vector q~O) for the equilibrium distribution 
f:(o) is 

ql ~ = h(n, 5) n ~ u  i (19) 

where 

h(n, e) = D n ] ~ , m , , d , ( 1 - d ~ ) c ~  -2 
2 M  ( ~ m o d o ( l - d ~ )  2 .2 c~)(Xom, ,doc  o) 

a n d / ~ : V u  = pV 'u .  Hence, we have the first-order momentum and energy 
equations: 

O,(nu) + V.  (ng(n, 5) uu) = -Vp 
(20) 

O ,(n~ ) + V . (neu ) = - V  . (nh(n, e) ~u) - pV. u 

For a continuum case with a Maxwell distribution, ql ~ will vanish. To 
O(u3), we can have addition terms: 

ql ~ = Zu2u; 

and 
f i : ~ T u = n ( g ( n , ~ ) -  l)uu :Vu 
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where 

with 

M 

Zl..r 2 3 d~ 4 = -flom,,-~- (1 - d~)(l -2d , , )e~  

2 Z~= ( D + 2 )  mZ~(r + 7,c~) c o 
,4 Z~, = -[Jz m2,~d,,( 1 - d~) ( 

,4 
Z 4 = 1 3 o m 3 d ~ ( l  - d.)(1 - 2d~)(~, + ~, c~) c~ 

1 
+ 2)/3,0m,~do(1 6 Z~ = 3 4 _d , , ) ( l_6d,~+6d2)c ,~  

2(D 

Note that the FHP-I and FHP-II models are degenerate cases of Eqs. (14) 
and (16). After some algebra, we obtain g(n, e.} = (3 - n ) / ( 6 - n )  and ,: = 1/2 
for FHP-I; and gin, ~ : ) = 7 ( 7 - 2 n ) / 1 2 ( 7 - n )  and ~= 3/7 for FHP-II. IL~) in 
general, g(n) and Pc depend on density and temperature. Temperature is 
usually determined by the particle density ratios between different types of 
particles. For the special case do = d~ = d2 = d, we have the explicit form 

21 1 - 2 d  

g = 3 2  l - d  

where d is the reduced density, d =  (2/21)n. The term g(n) has a form 
similar to that found in FHP models. ~j2) 

3. THE C H A P M A N - E N S K O G  E X P A N S I O N  A N D  
T R A N S P O R T  COEFFICIENTS 

At equilibrium, we have a zeroth-order distribution which satisfies 

(21) 

The first-order equations become 

(7,7 0) 
8t" ~-e'~"Vf~~ o-=1,2 

= o ' o ' ,  c?t 

(22) 

22/62/5-6-16 
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Also, we have 

f _ 4"(O)_k 4"{I)  
0 - -  . 1 0  T .#  0 

1,~ _ 1,,(o) 4-/.,~(1) 
. /  tl - -  . i  (I - -  .~  tl 

--(~ r,(o) ),'(I) i..~j-' ( ' ~ ( ) )  / . a ( l )  
o,o,I 0 - -  ~ ~ O ,  a c r , t a  

a~ 

~c2~(J )=[ - ( ( ) )  ( (  i ) _.t_ 2 r"  (o) i'<<i) 
(,~a.().# 0 / ~ a # , t ) ~ . l  I )  

h2 

where the tensor C (~ is the collision coefficient in (2,~ ~u) a~, hA 
Substituting (12) into (22), we obtain 

(23) 

c3do c(o) r ( 1 ) + ~ ( o )  r 
- -  = ~ O ,  t l c r , ]  rl tg t -o.o.~o 

tl, a 

o r  

. r l ;  ' =  t - y c. ,) ..... 1,, 
t (),(I \ a ,a  

Also, we obtain the following equation for./~(Jk 

8f~ I~ C,,.,o 8do 

O, 0 h. 2 

where 

(24) 

(25) 

~( 0 )  __ ~ ( 0 )  C a a ,  O r . ( o )  
aa ,  b X - - ~ ' a a ,  b2  g.-v(O ) t ' .~O,b~ 

To first order in u, the left-hand side of (25) has the form 

Od. C.~.o Odo 
L l a t r  ~ - -  Ot r~~ 8t ~ 0 , 0  

F [ - f lod~( l  - d . )  2 mr :Vu)] + c . e . . V d .  

1 
= 7  [-flod,.(1 - d,.) m,~c2o(2e.e. - ]) :Vu] + c,.e.. Vd.  

L 

+ ad~ Ca~,o Odo 1 
8t r~(~ 8t 2 

flodo(l - d~ ) m~c2~ V . u (26) 

Here ] is the unit tensor. We decompose L,.~ into several parts: 

L,,,. = L.,,,(visc) + L,.,,(cond) + L, . . (V.  u) (27) 
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where 
1 

L,~,~(visc) = ~ [ -//od,~(1 - d~) moc~(2e~e~ - i ]  

L,~(cond)  = c,~eo. Vd~ 

1 
L.,,,(V. u) = ~ [ - ~ o d , ( l  - d~) m , c ~ V ,  u] 

�9 V u  

(28) 

We have eliminated the time-dependent terms in the above equations. 
In order to obtain the transport coefficients, we need to write down 

the detailed collision operators and their linear expansions. We only treat 
the simplest case: do = dj = d2 = d. 

As mentioned before, collisions can be executed simultaneously or 
sequentially. If we consider the lattice gas to be a finite-difference scheme, 
the sequential collisions are suggestive of a time split method. In our 
simulations, the following five-step sequential collision operation was used: 
(1) speed-one particle collisions with all possible configurations, regardless 
of speed-two and rest particles; (2)speed-two particle collisions with 
all possible configurations, regardl~ess of speed-one and rest particles; 
(3) speed-one and speed-two particle collisions. Only two-body head-on 
collisions (a speed-one particle collides with a speed-two particle) have 
been introduced. The outgoing particle direction is 60" from the incoming 
direction; (4) similar collisions to those described in (3) with 120" rotation: 
(5)either one speed-two particle collides with one rest particle or two 
speed-one particles collide as shown in Fig. lc. We allow all spectators. In 
(3) and (4), we also allow the collisions with spectators. Then, these two 
particle collisions are really four-body (particle and hole) collisions, usually 
having the form./~.[~(1 -.[~)(1 - J ) ) ,  which is much larger than the standard 
collision form l-L, / f l l  -/))~= "'. Here si is the configuration assignment at 
x. In general, if there are M sequential collisions, the collision operator in 
Eq. (2) can be written as 

M 

~(2~(x, i) = ~ ~ l , ' ~ ( f ( i  - 1))  

' ~ J  ( 2 9 )  

f ( i )  = f ( i -  l ) + f2' , /)~(f(i-  1 )) 

where f ( i ) ~ . f ( x ,  t+  i/M) and f2 "~ is the collision operator associated with 
(i)o- the ith substep. Let cg").,,,~.,a be the linear expansion of f2~ . Then, it is easy 

to show that ~"'~ in Eq. (25) have the form aa, h2 

[0 ] ~ " J  ^ ( 3 0 )  
i 
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The matrix product ~ l i )~+  ~1 is not reversible. This is related to the fact 
that a different collision order will give different outgoing configuration 
and, hence, different transport coefficients. 

The collision matrices in our paper have the following form: 

~,,1, _(co' 
. . . .  

a ~ ,  h , l ,  - -  (1) 2 

.... "~-  t(/.; o~;) 

e , . ,  ( , .7 (/)~ 
"~ = t,,,~ o,12 

e,~, (o~',, (/';;/ 

where 

mt=d(1-d)ci rc  - ( I - d ) ( l + 4 d ) - d 2 , ~ ( l - d ) ( l + 5 d ) + ~ d  2, 

! ( t  - a ) ( l  + a ) + ~ d  ~, - ( I - J ) ( l  + 2</) - ~t 2, 
2 

l ( l _ d ) ( l + 5 d ) + l  2 I ld2]  7 ~d,~(l-a)(l+d)+ 7 j 

fD2 = (DI 

~=d( l -d )c i r c [ - ( t -d ) (1  + 4 d ) - 2 d 2 , ~ ( l - d ) ( l  +2d+3d2)+a  3, 

d(1 - d) 2, 0, ~ a(1 - d) 2, ~ ( 1 - d)( 1 + 2d + 3d 2) + d 3 

[, , m~=d(1-d)circ O,~d( l -d)  2 , ~ ( l - d ) ( l + 2 d + 3 d 2 ) + d  s, 

-(1 -d)(1 + 4d)-  2d 2, 

(1 -d) ( l  + 2d+ 3d2)+dS,-~d(l -d) 2 
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co2 = d(1 - d) circ[ - (1 

(1- 

{o 4 =d(1 - d )  circ[0, (1 

- d ) ( 1  + 4 d ) - d  2, O, (1 - d ) ( l  + 4 d ) + 4 d  2, O, 

d)(l + 4d) + 4d 2, O] 

- d ) ( l  + 4 d ) + 4 d  2, O, - ( 1  - d ) ( 1  + 4 d ) - d  2, O, 

( l - d ) ( l + 4 d ) + 4 d  2] 

r = circ[ - 2d( t - d), 0, - d( 1 - d), 0, - d( 1 - d), 0]  

~0~2 = circ[0, d(l - d ) ,  0, 0, 0, 0, d(1 - d ) ]  

~0~2 = circ[--d(1 - d ) ,  0, 0, 0, 0, d(1 - d ) ]  

where circ designates a circulant matrix. (The arguments of circ are the 
elements of the first row of the matrix. Each subsequent row consists of the 
same elements cyclicly shifted right one column.) 

Because of the rotational symmetry of the lattice and collisions, we can 
write a compact form for ~o~ uer, h 2 ,  

/ ~ ( 0 )  C(O)  \ 7,r [t',,I,t,~ al,h2] ~' li) (i) 
L a'7, h) = "  - , (0)  C{O) i = ~ ( D a h @ T a ; .  

~ C  a 2 , h l  a2,h2/ " 

Here %,b"'-- C'~ 0/2,  = t-'"', o~[;},~=r*lo~ a n d  ~(41  = (q , , I  and al,hl  ~ ~ u I . h 2 ~  ~" a2,  bI  ' l)ah v a2, h2~ 

o) 
~ - 0 

r~2'-  ( 0 1) 
~ -  11 0 

(31) 

We know that o /~  ,,~ are circulant matrices, having the form 

( i )  circ[U(i], u]i)2, [[ ( i )  [ [ ( i )  [ [ ( i )  r [ ( i ) ]  
(.l) ah ~ 1 3 ~  ~ 1 4 ~  ~ 1 5 ~  ~ J 6 . 1  

where U~; is an element of the circulant matrix. The eigenvalues of co~'~ are 

2,.~' = ~ ' /" '  exp ( 2 n i ( c -  l ) ( a -  l ,,, 6 
a 
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and 

[ , / i ~ ] .  vl,.~ = 21[Ivt, ~ (321 

where i =  1 ..... 6 and c =  1 ..... 6. The v I') are the eigenvectors. All the E,)"~ I 
have the same eigenvectors. 

Denot ing  z ~  as 

we have 

where ~'"" and 
tively. 

We can write 

Thus.  

Since 

z ,,~' ~ , , w " ' -  - - - , ,  (33) 
2 

W;"' are the eigenvalues and eigenvectors of r ~ ,  rcspcc- 

by (33), we have 

aa, b 2 J b  "~- E 
b,A c,),,# 

The p~"" can be expressed as 

q/~ = ~ p" 'W~ ' "  (36) 
P 

c, kt rrrC,~t c ~ - -  C,l.t s p H / 2  U a C : a 2 _ _ E  c v v , #  rag W~ p (37) 

1 
= ~ " W;; ) L , . .  (38) p,., & "  (v a , . , , o  

It  is easy to decompose  

p ' " " (v i sc )=  2 ~' ( 2 e , , e . - l ) ~ ' m j . ( l - d .  2 ,., 

1 V 5" ~ v " l  ~ W ' " " P  p '"~ ' (cond)= ~,..;, ,, . . . , ,  . - -  .,_, . . . .  e , , ~ (  c.d.  (39I 

- 2~,.---- ~ (v',i) ~ m~d~(l - d ~ c ; ) V - u  

~<,u c ~ l ~ _  I "  ~' ' (35) ~- aa,/~,~.!/,  - -  E / / )  I " C  
h, ), /.,c 
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We can obtain the first-order stress tensor 

H ( 1 )  a (~o-,~ f o r ( l )  

a ,  o- 

= ~ (e,,)~ (e~)i~ v. m.c~  W~ 
c , / 1  

Note that the term p"~'(cond) has no contribution to H ~ and (40) can 
be rewritten as 

H~JI_3[1 o t m,~c2,,W3~/~' d~,(1 - d . , ) m o ,  c . ,W~,  
~1~- 4 - ~  , 

From the above equation, we obtain the shear viscosity 

Zmo,ow.o , (41) 

We also obtain an expression for the heal flux 

qfJJ-- 2 ] /  ~-~ l.~-(l) 

':~ . . . .  "'1' ~(cond ) = ( ~ l e , ,  )~ .1 ,, 
a ,  o- 

<, t  t a 

o r  

We obtain the following analytical formula for heat conductivity: 

3 ( ~ r n . c 3 W 2 . 2 ) ( ~ c , W 2 2 " ] ( O d " ]  (43) 

The derivative (i)d./t?~:). in (43) can be evaluated from the definitions 
(3) (5). Following the method proposed by Hatori and Montgomery, 1'41 
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after tedious algebra, we can obtain the kinematic viscosity v =#/n and 
conductivity 2 as follows: 

v=-iZ 
819d 

2 =  
176~ 2,2 

(44) 

where 

r = _ I l d +  38d 2+6d 3 - 3 5 1 d  4+ 762d 5+ 132d 6 -  2925d 7+4347d s 

_ 3 6 0 d  9 - 6390d"~ + 8748d II _ 5 5 0 8 d  12 + 1 7 2 8 d  13 _ 216d 14 

~.3.2 3d(I d) 3 12d2(1 - d )  2 3d3(I d) 

and 

{2,2 = _ 6d+  7d 2 + 31d 3 - 115d 4 + 118d 5 

+ 123d 6 - 494d 7 + 636d ~ - 432d 9 + 156d Jo _ 24d1~ 

The constant in (44), 5/16, is the lattice viscosity, the second-order 
correction term to the kinetic equation (2). It is a discrete effect of the lat- 
tice, and is 2.5 times larger than that found in the FHP unit-mass single- 
speed models. ~2~ In Figs. 2 and 3, we present the viscosity and heat con- 
ductivity as a function of reduced density. They are always positive. The 
viscosity has a shape similar to other FHP  models. Using the same method 
discussed above, the general viscosity for different d,  can also be worked 
out immediately by allowing co "~ in (31) to be a-dependent. J'lt~ 

The complete equations for momentum and energy up to O(u 2) now 
have the following form: 

c~,(nu) + Y .  (ng(n, ~) uu) = - V p  + V -  (pVu) 

Or(ne) + V.  (ncu)= - V .  (nh(n, ~:)t:u)- pV. u 

+ V. (2V~:) + uVu" Vu 

(45) 

The classical thermohydrodynamic equations ~5~ are recovered for 
g =  1 and h = 0  in (45). 
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4. HEAT CONDUCTION IN CHANNEL FLOWS 

4.1. Thermal Boundary Implementation 

The thermohydrodynamic equations (45) can bc used to simuhttc 
physical systems with temperature-dependent boundaries. At these boun- 
daries, appropriate collision rules must be chosen. 

Adiabatic and isothermal boundary conditions are commonly used. 
Adiabatic conditions require zero temperature gradient normal to the wall. 
In a lattice gas model, this is achieved by selecting incident and reflected 
particles which have the same kinetic energy (mirror reflection), i.e., 
there is no change in type of particles at the wall. A constant-temperaturc 
boundary can be obtained by maintaining a fixed ratio between speed-onc 
and speed-two particles after a collision with the wall. For example, a high- 
temperature boundary can be achieved by allowing a spced-one particle to 
have a nonzero transition probability to bccomc a spccd-two particle. 

There are two commonly used velocity boundary conditions: nonslip 
and frec-slip. The nonslip condition produces zero velocity at the wall. This 
is called a bounce-back condition. The free-slip velocity condition is u~eful 
for thermohydrodynamic problems. Here we require the velocity derivativc 
normal to the wall to be zero. The velocity tangential to the wall remains 
unchanged. This is sometimes called the free-slip boundary condition. 
Adiabatic and isothermal boundary rules must conserve mass and satisfy 
some velocity restrictions. Since speed-one and speed-two particles in our 
model do not have the same mass, we cannot simply just change the speed 
of the particles and still conserve mass. A simple way to reduce the tem- 
perature and conserve mass is to allow two speed-two particles which 
occupy the same boundary site to become one speed-one particle. The 
inverse process can be used to raise the boundary temperature. When all 
particles in the system have zero speed, the system has zero temperature. 
When all particles are speed-two particles and the macroscopic velocity is 
zero, the system will have the maximum temperature, ~: = 2. 

4.2. Heat Conduction 

A typical two-dimensional heat conduction problem is to determine 
the temperature field between two plane plates with a small temperature 
difference. When the macroscopic velocity is zero, thc temperature is a 
linear function of the distance from one plate for time t ~ ~ .  A simulation 
of this system was run using a periodic condition, NT(O, t ) =  NT(L,, t), 
where Lx is the x-direction length (along the channel). The initial condition 
is constant temperature everywhere (e = 6/7) and we use a reduced density 
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Fig. 4. The comparison ~)f the temperature distribution across the channel width when the 
system has and does not have a net flow along the x direction. (x )The  temperature for the 
system with an x-direction flow (B~ = 0.21 ). [J I ) The temperature for the system with zero net 
Ilow (B, =0). Tile solid lille is the analytical result in (46) for B~=0.21. 

d of 0.25 for all directions. The lower wall has a hot temperature of l . t3 
and the upper wall has the lower temperature of 0.85. The simulation 
occupies 512 x 256 lattice sites. We have used a 512 x 4 site average to 
obtain temperatures as the function of y. In Fig. 4, we present the tem- 
perature distribution (1 I symbols) for time step 30,000. The normalization 
is the same as in Section 4.3. 

4.3. Heat  Conduct ion in a Channel  Flow w i t h  a 
Poiseuille Veloci ty  Profile 

An interesting simulation was done for the system described in 
Section 4.2 but with forcing in the x direction. This forcing is obtained by 
flipping particle velocities along the flow direction: Because speed-one and 
spbed-two particles have the same momentum, we can use the same forcing 
for both types of particles. There are two allowed forcings in the x direc- 
tion: a particle along the direction of 120" with the x axis changes to be a 
particle along the direction of 60" with x axis. The reflection of this flipping 
through the x axis is also allowed. This flipping process does not change 
total mass or total energy; only the momentum changes. In a constant- 
temperature system, the momentum increase is balanced by friction at the 
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wall. The system relaxes to a parabolic velocity profile. If the system has a 
temperature gradient and the transport coefficient is independent of ~em- 
perature, the momentum equation still has the same form as the constant- 
temperature case, but the temperature equation will couple with the 
velocity distribution. We define 

u �9 y 

U* = -  y* = -  
Uo' h 

/ ; *  = I; - -  V 0 

I ;  I - -  ' ! ;O 

where % and el are the upper Wall and lower wall temperatures, respec- 
tively, 2h is the channel width, and Uo is the maximum velocity in the 
channel center ( y =  0). Then, we have a parabolic velocity distribution: 

u * = ( l  _ y , 2 )  

From (45}, we have the tempcrature equation 

d2t:* /du*\ 2 
d2y , -  B , ~ y , )  

where Br =/aUg/2(et - % )  is the Brinkman number, which is the product of 
the Prandtl number and Eckert number. ~t6~ It can be shown that the 
temperature has the following distribution: 

! 
~3" ----- @ (1 -- y , 4 )  + 2 (1 -- y*)  (46) 

In Fig. 4, we present simulation results (x) compared with the analytic 
temperature distribution (46) (solid line) for Uo=0.267 (Br=0.21), The 
squares in the plot represent the simulation results for Br = 0. The numeri- 
cal results of the temperature distributions agree qualitatively with (46) 
except for boundary regions. This disagreement may represent the effect of 
the variation of the transport coefficients in the present model when a 
temperature gradient exists. 

5. BI~NARD CONVECTION 

B6nard convection is perhaps the best-studied hydrodynamic 
instability problem because in this process a simple instability mechanism 
produces complicated flow patterns. Again we consider fluid flow between 



A Lattice Gas Model for Thermohydrodynamics 1141 

two plane plates with different temperatures as described in Section 4. But 
now we impose a large temperature difference. For comparison with other 
data, in this section we use T instead of ~. The gravitational forcing is here 
in the negative y direction. The transition from conduction to convection, 
determined in the linear stability analysis, depends on the Rayleigh 
number: 

Ra = ~n ~ T  Ly_3 f (47) 
2v 

where ~ is the coefficient of thermal expansion, -(l /n)On/OT, and AT is 
the temperature gradient between two plates; f is the forcing rate per unit 
area per time step; L~ is the distance between two plates; 2 is the thermal 
conductivity; and v is the kinematic viscosity. The Boussinesq approxima- 
tion is needed to derive the approximate equation for the small-gradient 
case. This approximation assumes that convection can be described by the 
incompressible Navier Stokes equation and that the density in thc forcing 
term r~/'can be replaced by n =no(1 - ~  AT). In an ideal gas system ~ = I/7". 

The system size in our simulation is fixed to make L,., the lattice size 
in the x direction, twice the size of L.v. This allows the system to support 
the typical convection cells seen in experiments. ~7~ The velocity boundary 
will affect the critical Rayleigh number. The free-slip boundary condition 
has a higher critical Rayleigh number. We use both nonslip and free-slip 
boundary conditions to determine their effects on the formation of the 
convection cells. The initial condition we use is zero velocity. The reduced 
density for the initial time step is do = d~ = d2 = 0,25. 

Because the lattice gas system itself has considerable internal noise, 
it is difficult to determine precisely the critical Rayleigh number for the 
transition from conduction to convection. The measurement of the Nusselt 
number as a function of Rayleigh number determines how the heat flux and 
heat conductivity change when Ra is varied. The critical point can be deter- 
mined from these measurements. Here Nu = 2e~/2, the ratio of the effective 
conductivity 2elf to the conductivity 2 for v,. = 0. The 2,rr can be measured 
using the following relation: 

zJT 
q,, = -2ofr--ZT.. (48) 

~ y  

Here q.,, is the heat flux determined from the microscopic measurement 
using q v --S',..,,,, m,,.,,,,f~fe ~,, - u) 2 (e,,~ - u ) .  v. Because the Ra number varies as 
L,3,, it is easy to use L,, to vary Ra. The forcing scheme is very similar to 
that described in Section 4. But this forcing is not the same as a gravity. 
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For identical molecules in a uniform gravitational field, all particles in 
space at each time step experience the same acceleration�9 In a lattice gas, 
however, a particle only can accept a unit momentum by changing its 
direction. If all particles at each time step are accelerated, the forcing will 
be too strong. A random, low-frequency particle forcing is required. The 
forcing sites used in this paper are randomly distributed in sp~cc and time 
rather than using fixed space pointsJ~~ For a given flipping rate, it is dif- 
ficult to make the forcing directly proportional to density n as required by 
linear stability theory, because of exclusion of multiple particle occupations 
For example, suppose we find a particle in the h direction in Fig. 1, which 
should change it to be in the f direction, but if there is a particle in the 
same cell in thefdireetion,  the forcing is ~rohibited. Thus this acceleration 
is actually proportional to d ( l - d ) ,  where d is the reduced density. 
Suppose that d=do(I  + e A T ) ,  where d~ is the reduced density for the 
constant-temperature system, then we have 

d(I - d) = ( d o -  d~) + ~d~( I - 2d<~] A T +  o(A7 '~ } 

The constant term can be combined with the pressure gradient term and 
the AT term is the Boussinesq force and there is only a rcscaling effect 
compared with the force proportional to density. In order to keep the 
coefficient of AT positive, the reduced density must be less than half. This 
same restriction is required in order to keep g(n) positive. 

In Fig. 5, we present typical lattice gas simulation results for the con- 
vection cells. The system size is 512 x 256 lattice sites. The initial density 

a 

o.o ;.o 8'.o 12.o' 1~.o 2~.o 24.o' 28.o' 32.0 
x 

Fig. 5. Velocity vector distribution in B6nard convection. The bottom boundary has a 

temperature of 1.48 and the upper boundary has a temperature of 0.54. The left and right 
boundaries are adiabatic, with a free-slip velocity condition being used for tangential velocity 
components. 
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and velocity loading is random. After about 30,000 times steps, we time 
average for 3000 steps. A spatial average of 16 x 16 sites is used to obtain 
a macroscopic value. Then we can have 32 x 16 macroscopic sites. A non- 
slip condition for all walls and an adiabatic thermal condition for the left 
and right boundaries have been used. Two convection vortices are obser- 
ved. These two vortices are not completely stable. The centers of the vor- 
tices oscillate slightly about the center point. There are several causes for 
this, First, the Rayleigh number is above the transition point. Second, the 
forcing mechanism used is impulsive and random. This generates local 
noise which destabilizes the vorticity pattern. Third, the convection 
coefficients g(n, T) in the momentum equation and h(n, T) in the energy 
equation differ. This causes different time scales for the two equations. 

When we use a periodic condition in the lateral direction and keep the 
upper and lower boundaries as before and change the wall to nonslip con- 
ditions, all simulations show similar spatial velocity structures, but with a 
minor perturbation of the vortex center. Figures 6 and 7 are the density 
and temperature contours for Fig. 5. Typical convection behavior is found. 
In Fig. 8, we give the temperature (averaged along the x direction) profiles 
from Fig. 7. This plot shows that there is a thermal boundary near the 
upper and bottom boundaries. The density distribution has a struclure that 
agrees with other simulationsJ ~8~ 

The measurement of heat flux in the y direction q,. (which should be 
linearly proportional to the Nusselt number) versus temperature difference 
AT (which should be linearly proportional to Ra) is presented in Fig. 9. 
The forcing rate for each time step is about 10 and the average density per 

densLtL~ c o n t o u r  pLot. 
o 

'o.o d.o ~G.o 2~.o 
x 

:]2.0 

Fig. 6. Density contours from the lattice gas simulation for Fig. 5. 
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LemperoLure conLour pLoL 
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.............. o. ~ o . ~ . ~ _  .o. ~o ~ -  
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x 

Fig. 7. Temperature contours from the lattice gas simulation for Fig. 5. 

cell is 3.25. After the system approaches a local equilibrium, a spatial 
average over 1000 time steps was used to obtain the heat flux. An almost 
parabolic relation between heat flux and temperature difference for AT is 
found. This means that the effective conductivity )~rr will be linearly 
proportional to AT. This agrees with experimental observations. ~'7~ The 
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Fig. 8. The temperature profile obtained by averaging over x for Fig. 7. 
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change in heat flux with a change of temperature in experiments has a 
sharp change of slope at the critical Rayleigh number. Our simulation does 
not clearly present this phenomenon. Noise in the lattice gas model is 
possibly too large. An extrapolation givcs a lransition point at , IT=  0.3, 
which corresponds to a Rayleigh numbcr of 2508. 

6. I S O T H E R M A L  P R O B L E M S  A N D  GALILEAN I N V A R I A N C E  

Now we consider the isothermal incompressible fluid limit for the 
present model. We want to recover the Navier Stokes equation with no 
unphysical terms at some fixed temperatures. Note that if ~, and n both are 
constant, the energy equation is automatically satisfied. Mass density n and 
energy r, are defined by (3) and (5). Thus, for a given mass density, we can 
vary the temperature by varying the ratios of different types of particle to 
mass density k,~ = d,~/n. The temperature is determined by these ratios. The 
quantities d~ we consider here are the cquilibrium values,.determined by 
Eq. (13). 

If the particles are in statistical equilibrium, the collisions between the 
different types of particles should satisfy the detailed balance condition. 
After eliminating eo and 7o in (11) for the zero-velocity case, we obtain 

~;~?~ = a~ (49) 

822/62/5-6-17 
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as required by the principle of detailed balance. Here 

d i 1 1 1 LF ~ ~ ] 
x , y =  z = - -  L + 

Together with Eqs. (3) and (5), we have four variables, do, all, d_,, and c, 
but only three equations. The internal energy can be treated as a frec 
parameter in the isothermal limit. We may add the equation g(n, ~:)= 1, or 
equivalently, Pl =0 ,  and ask whether physical solutions exist for these 
equations. Physical solutions require 1 >~ d~ >10 and ~: ..... >/c >~ 0. Here cz 
varies from 0 to N -  1 and ~: .... is determined by the geometry. For physi- 
cal solutions, we may write d,,=d~(n) and ~:=~(n). We show later that 
physical solutions exist. Because the lattice gas model has density fluctua- 
tions, we cannot exactly satisfy g(n, t:)= 1. Instead, we can write down the 
velocity dependence of n = n , + n j u  ~- and c=c~+~:~u 2 for small macro- 
scopic velocities. Consequently, we havc g(n, ~:) = 1 + O(u~) and pj = Ofu2). 
One can show that these u 2 corrections contribute terms of order u 4 to the 
Navier Stokes equation. Hence, the order of accuracy of the Navicr Stokes 
equation is unchanged by corrections of order u 2 in the density and 
internal energy. 

To illustrate this idea, to the second order in lut, wc obtain the 
equilibrium distributions do, dl, and d 2 and the energy ~: as a function of 
density n. We solve for these four variables using the four equations 

~ do + 6dj + 3d2 = n 

3d~ + 6d2 = m: 

I 
/ \ do / \  / 

nd~ ( ! - d~ )( 1 - 2d~ ) + 2d2( 1 - d2)( 1 - 2d:) = 12 [d~( l - d~ ) + d2( 1 - d2) ] 2 

In Fig. 10, we present the numerical solution of do, d~, and d2 for 
n<~2.5. Other allowed physical solutions appear for 3~<n~<4.5 and 
7 ~< n ~< 10.5. For the excluded values of n, at least one d, becomes unpbysi- 
cally negative. 

In Fig. 11, the solid line shows those values of ~ and n for which g = t. 
Physical solutions exist along this line. We also plot the physically allowed 
e(n) for other values of g. There are two reasons to be interested in the 
dependence of the solution on g. First, one would like ~:(n) to be a slowly 
varying function of g, so that small density fluctuations cause small changes 
in g. We see that this is true. Second, we could carry out the usual g-scaling 
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Fig. I0. Equilibrium distributions for speed-zero (solid line), speed-one (dashed line), and 
speed-two particles (dots, right vertical coordinate) when gin, e.) = 1. This figure demonstrates 
the existence of physical solutions when g, the coefficient of the u" Vu term, is unity�9 
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Fig. I1. c(n) plots for (- -) g = 0 . 9 ,  ( - )  1.0, (.-.) 1.2, ( . . . .  ) 1.5, and ( . - - - )  2.0. This figure 
illustrates a range of g for which physical solutions exist. 
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of time, viscosity, and pressure, and obtain a corresponding change in die 
Reynolds number, Re= gully. Here u is a characteristic velocity, / is a 
characteristic length, and v is the viscosity. In previous calculations, g is 
about 1/3. Having g =  1 allows at least a factor-of-three higher Reynolds 
number. Letting g be larger than one and scaling allows even higher 
Reynolds numbers for the same viscosity. This Reynolds number increase 
is important because the computer time for a lattice gas calculation 
depends on the fourth power of the Reynolds number. 

In order to demonstrate the modified g(n) effect in the equation of 
state, in Fig. 12 we present computational results for the I3-bit model for 
the energy decay in Kolmogorov flow, compared with analogous results for 
the FHP-I model. (~9'2~ A system size of 4096 x4096 lattice sites wa~ used 
for both cases. The period in the y direction is 4096 x ,~3/2 lattice units. 
Momentum and energy have been averaged over 64 x 64 lattice sites to 
obtain 64 x 64 macroscopic points. The streamwise energy of the system is 
obtained by summing over all the macroscopic streamwise kinetic cnergics. 
There is a substantial energy oscillation in FHP-! model because of the 
g(n) effect in the equation of state. We find that the oscillation in kinetic 
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0 . 0  5 0 0 . 0  I .0  1500 .0  
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2000.0 

Fig. 12. The streamwise kinetic energy for the Kolmogorov flow, u 0 =0.3 sin(y). The solid 
curve is the 13-bit result with n = 2.0 and e = 0.25. The dashed curve is the six-bit result when 
n = 1.8 and 5=0.5. The unphysical oscillation presented in the six-bit result is reduced 
significantly in the 13-bit result because the u z term in the pressure has been eliminated. 
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energy decay greatly decreases for the present model because p~ equals to 
zero. The initial velocity is Uo = 0.3 sin(y). The initial conditions for the 
13-bit model are n = 2.0 and ~: = 0.25; for FHP-I, n = 1.8 and ,: = 0.5. The 
internal energy decay rate is within 3 % of the theoretical prediction. 

The detailed-balance condition in (49) requires some modification if 
the temperature and density changes are not small, as expected in com- 
pressible cases for moderate velocities. For these cases, one may introduce 
the parameter y, which is the ratio of the probability of a collision process 
to the probability of its inverse process. 7 is one for the present model. 
Therefore, the equilibrium distribution of (11) should include a potential 
energy depending on Y. Equation (49) will then be replaced by another 
equation which contains a 7 dependence. 

7. C O N C L U D I N G  R E M A R K S  

In this paper, we have presented a lattice gas model with 13 discrete 
veJocities for simulating thermohydrodynamics. An analytical derivation 
shows that this model obeys the compressible Navier-Stokes equalions. 
Simulations confirm the usefulness of the model for thermohydrodynamic 
flow problems. Applications of the model to typical thermal problems have 
produced results which compare well with other numerical and analytic 
results. 

The collision ~)perations used in this paper are nol oplimized, in order 
to (~btain a larger Reynolds number, we can include all allowed collision 
processes. Because we can vary g(n) in the system for isothermal systems, 
it is possible t(~ obtain a large R,  (ref. 2) by optimizing thc collision 
operator and choosing an optimal density and temperature domain. 

The generalization of the rcsulls of this paper to three-dimensional 
thermohydrodynamics is expected to be straightforwardJ :~ 

Further studies and applications of this model are in progress. First, 
the success of this model in recovering Galilean invariance at a particular 
temperature and density make it plausible that we can use a system with 
many discrete velocities to obtain a more general Galilean invariance 
withot~t the isothermal restriction. It will be interesting to address such 
questions as: how many speeds are needed to recover the Galilean 
invariance and to obtain a correct equation of state without velocity 
dependence'? Second, there are many interesting theoretical and engineering 
problems which can be simulated using this lattice gas model, including 
flow through porous media, mantle convection, and biological flows. The 
viscosity of the present model depends on the local temperature and 
density, This is an important property for simulating realistic materials in 
mantle convectionJ 22J in general, these flows have low Reynolds number 
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and complicated boundaries. Third, the extension of this model to include 
other properties, such as chemical reactions and phase transitions, is 
possible. 

Studies by Nadiga e t  al. 123J have shown how many speeds are required 
to reproduce specific physical phenomena, including shocks and equi- 
librium Maxwellian distributions. 
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